Mid-Cities Math Circle $(MC)^2$ Quadrilaterals and Ptolemy's Theorem February 12, 2025

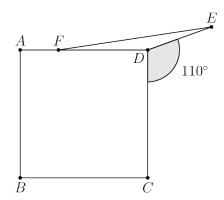
We say that ABCD is cyclic if A, B, C, D lie on a circle in that order.

Theorem. Let the diagonals AC and BD of ABCD intersect at X. The quadrilateral ABCD is cyclic if and only if any of the following equivalent conditions hold:

- (i) $\angle ABD = \angle ACD$.
- (ii) Opposite angles sum to 180°.
- (iii) $AX \cdot XC = BX \cdot XD$.
- (iv) $AB \cdot CD + BC \cdot AD = AC \cdot BD$.

Warm-up Problems

Problem 1. As shown in the figure below, point E lies on the opposite halfplane determined by line CD from point A so that $\angle CDE = 110^{\circ}$. Point F lies on \overline{AD} so that DE = DF, and ABCD is a square. What is the degree measure of $\angle AFE$?



Problem 2. A quadrilateral is inscribed in a circle of radius $200\sqrt{2}$. Three of the sides of this quadrilateral have length 200. What is the length of the fourth side?

Problem 3. In triangle ABC we have AB=7, AC=8, BC=9. Point D is on the circumscribed circle of the triangle so that AD bisects angle BAC. What is the value of $\frac{AD}{CD}$?

More Difficult Problems

Problem 4. Let P be a point on the arc BC of the circumcircle of an equilateral triangle ABC that does not contain the vertex A. Prove that PA = PB + PC.

Problem 5. In a regular heptagon ABCDEFG, prove that $\frac{1}{AB} = \frac{1}{AC} + \frac{1}{AD}$.

Problem 6. A hexagon is inscribed in a circle. Five of the sides have length 81 and the sixth, denoted by \overline{AB} , has length 31. Find the sum of the lengths of the three diagonals that can be drawn from A.

Problem 7. Let P be a point on the circle circumscribing square ABCD that satisfies $PA \cdot PC = 56$ and $PB \cdot PD = 90$. Find the area of ABCD.

Problem 8. In convex quadrilateral KLMN side \overline{MN} is perpendicular to diagonal \overline{KM} , side \overline{KL} is perpendicular to diagonal \overline{LN} , MN=65, and KL=28. The line through L perpendicular to side \overline{KN} intersects diagonal \overline{KM} at O with KO=8. Find MO.

Problem 9. Let ABCDE be a pentagon inscribed in a circle such that AB = CD = 3, BC = DE = 10, and AE = 14. Find the sum of the lengths of all diagonals of ABCDE.

Problem 10. Let $A_1A_2A_3A_4A_5A_6$ be a hexagon inscribed inside a circle of radius r. Furthermore, for each positive integer $1 \le i \le 6$ let M_i be the midpoint of the segment $\overline{A_iA_{i+1}}$, where $A_7 \equiv A_1$. Suppose that hexagon $M_1M_2M_3M_4M_5M_6$ can also be inscribed inside a circle. If $A_1A_2 = A_3A_4 = 5$ and $A_5A_6 = 23$, find r.

Problem 11.Let a > b > c > d be positive integers and suppose that ac + bd = (b + d + a - c)(b + d - a + c). Prove that ab + cd is not prime.

Problem 12. Prove that $\csc \frac{\pi}{7} = \csc \frac{2\pi}{7} + \csc \frac{3\pi}{7}$ using Ptolemy's Theorem.

Problem 13. A circle with center O passes through the vertices A and C of the triangle ABC and intersects the segments AB and BC again at distinct points K and N respectively. Let M be the point of intersection of the circumcircles of triangles ABC and KBN (apart from B). Prove that $\angle OMB = 90^{\circ}$.