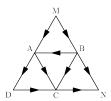
Mid-Cities Math Circle $(MC)^2$ Selected Combinatorics Problems December 4, 2024

Warm-up Problems


Problem 1. One thousand unit cubes are fastened together to form a large cube with edge length 10 units; this is painted and then separated into the original cubes. What is the number of these unit cubes which have at least one face painted?

Problem 2. Six straight lines are drawn in a plane with no two parallel and no three concurrent. Find the number of regions which they divide the plane into.

Problem 3. A circular table has 60 chairs around it. There are N people seated at this table in such a way that the next person seated must sit next to someone. What is the smallest possible value for N?

More Difficult Problems

Problem 4. Using only the paths and the directions shown, how many different routes are there from M to N?

Problem 5. Ten points are marked on a circle. How many distinct convex polygons of three or more sides can be drawn using some (or all) of the ten points as vertices?

Problem 6. Alan and Barbara play a game in which they take turns filling entries of an initially empty 2008×2008 array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all the entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?

Problem 7. Robert has 4 indistinguishable gold coins and 4 indistinguishable silver coins. Each coin has an engraving of one face on one side, but not on the other. He wants to stack the eight coins on a table into a single stack so that no two adjacent coins are face to face. Find the number of possible distinguishable arrangements of the 8 coins.

Problem 8. A grasshopper starts at the origin in the coordinate plane and makes a sequence of hops. Each hop has length 5, and after each hop the grasshopper is at a point whose coordinates are both integers; thus, there are 12 possible locations for the grasshopper after the first hop. What is the smallest number of hops needed for the grasshopper to reach the point (2021, 2021)?

Problem 9. A plane contains 40 lines, no 2 of which are parallel. Suppose that there are 3 points where exactly 3 lines intersect, 4 points where exactly 4 lines intersect, 5 points where exactly 5 lines intersect, 6 points where exactly 6 lines intersect, and no points where more than 6 lines intersect. Find the number of points where exactly 2 lines intersect.

Problem 10. Define a selfish set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1, 2, ..., n\}$ which are minimal selfish sets, that is, selfish sets none of whose proper subsets is selfish.

Problem 11. The Annual Interplanetary Mathematics Examination (AIME) is written by a committee of five Martians, five Venusians, and five Earthlings. At meetings, committee members sit at a round table with chairs numbered from 1 to 15 in clockwise order. Committee rules state that a Martian must occupy chair 1 and an Earthling must occupy chair 15, Furthermore, no Earthling can sit immediately to the left of a Martian, no Martian can sit immediately to the left of a Venusian, and no Venusian can sit immediately to the left of an Earthling. The number of possible seating arrangements for the committee is $N \cdot (5!)^3$. Find N.

Problem 12. A certain state issues license plates consisting of six digits (from 0 through 9). The state requires that any two plates differ in at least two places. (Thus the plates $\boxed{027592}$ and $\boxed{020592}$ cannot both be used.) Determine, with proof, the maximum number of distinct license plates that the state can use.