Mid-Cities Math Circle $(MC)^2$ Selected Number Theory Problems November 29, 2023

Warm-up Problems

Problem 1. Chris' birthday is on a Thursday this year. What day of the week will it be 60 days after her birthday?

Problem 2. Among the integers $1, 2, \ldots, 2023$, what is the maximum number of integers that can be selected such that the sum of any two selected numbers is not a multiple of 7?

Problem 3. Define a sequence recursively by $F_0 = 0$, $F_1 = 1$, and $F_n =$ the remainder when $F_{n-1} + F_{n-2}$ is divided by 3, for all $n \ge 2$. Thus the sequence starts $0, 1, 1, 2, 0, 2, \ldots$ What is

$$F_{2017} + F_{2018} + F_{2019} + F_{2020} + F_{2021} + F_{2022} + F_{2023} + F_{2024}$$
?

More Difficult Problems

Problem 4. Find the least positive integer n such that no matter how 10^n is expressed as the product of any two positive integers, at least one of these two integers contains the digit 0.

Problem 5. Find the sum of all positive two-digit integers that are divisible by each of their digits.

Problem 6. What is the largest positive integer n for which $n^3 + 100$ is divisible by n + 10?

Problem 7. In Pascal's Triangle, each entry is the sum of the two entries above it. The first few rows of the triangle are shown below.

Row 0:				1			
Row 1:			1	1			
Row 2:			1	2	1		
Row 3:		1	3	3	1		
Row 4:		1	4	6	4	1	
Row 5:	1	L 5	10) 1() 5	1	
Row 6:	1	6	15	20	15	6	1

In which row of Pascal's Triangle do three consecutive entries occur that are in the ratio 3:4:5?

Problem 8. What is the greatest integer less than or equal to

$$\frac{3^{100} + 2^{100}}{3^{96} + 2^{96}}$$
?

Problem 9. Given that 2^{2004} is a 604-digit number whose first digit is 1, how many elements of the set $S = \{2^0, 2^1, 2^2, \dots, 2^{2003}\}$ have a first digit of 4?

Problem 10. How many nonnegative integers can be written in the form

$$a_7 \cdot 3^7 + a_6 \cdot 3^6 + a_5 \cdot 3^5 + a_4 \cdot 3^4 + a_3 \cdot 3^3 + a_2 \cdot 3^2 + a_1 \cdot 3^1 + a_0 \cdot 3^0$$

where $a_i \in \{-1, 0, 1\}$ for $0 \le i \le 7$?

Problem 11. Suppose that the set $\{1, 2, \dots, 2024\}$ has been partitioned into disjoint pairs $\{a_i, b_i\}$ $(1 \le i \le 1012)$ so that for all $i, |a_i - b_i|$ equals 1 or 6. What is the last digit of the sum

$$|a_1 - b_1| + |a_2 - b_2| + \dots + |a_{1012} - b_{1012}|$$
?

Problem 12. Find all solutions to $(m^2 + n)(m + n^2) = (m - n)^3$, where m and n are non-zero integers.