UT Arlington Mid-Cities Math Circle $(MC)^2$ Selected AMC-AIME Geometry Problems October 6, 2021

Warm-up problems

Problem 1. What is the smallest whole number larger than the perimeter of any triangle with a side of length 5 and a side of length 19?

Problem 2. Square ABCD has side length 2. A semicircle with diameter AB is constructed inside the square, and the tangent to the semicircle from C intersects side AD at E. What is the length of CE?

Problem 3. Rectangle ABCD has sides AB = 6 and BC = 3. Point M is chosen on side AB so that $\angle AMD = \angle CMD$. What is the degree measure of $\angle AMD$?

Problem 4. Four distinct points are arranged on a plane so that the segments connecting them have lengths a, a, a, a, a, a, a, and b. What is the ratio of b to a?

Harder problems

Problem 5. On square ABCD, point E lies on side AD and point F lies on side BC, so that BE = EF = FD = 30. Find the area of the square ABCD.

Problem 6. Circle C_1 has its center O lying on circle C_2 . The two circles meet at X and Y. Point Z in the exterior of C_1 lies on circle C_2 and XZ = 13, OZ = 11, and YZ = 7. What is the radius of circle C_1 ?

Problem 7. In $\triangle ABC$, AB = 86, and AC = 97. A circle with center A and radius AB intersects \overline{BC} at points B and X. Moreover \overline{BX} and \overline{CX} have integer lengths. What is BC?

- **Problem 8.** A unit square is rotated 45° about its center. What is the area of the region swept out by the interior of the square?
- **Problem 9.** Let $\triangle PQR$ be a triangle with $\angle P = 75^{\circ}$ and $\angle Q = 60^{\circ}$. A regular hexagon ABCDEF with side length 1 is drawn inside $\triangle PQR$ so that side \overline{AB} lies on \overline{PQ} , side \overline{CD} lies on \overline{QR} , and one of the remaining vertices lies on \overline{RP} . Find the area of $\triangle PQR$.
- **Problem 10.** Triangle ABC has AB = 21, AC = 22 and BC = 20. Points D and E are located on \overline{AB} and \overline{AC} , respectively, such that \overline{DE} is parallel to \overline{BC} and contains the center of the inscribed circle of triangle ABC. Find the length of DE
- **Problem 11.** In $\triangle ABC$, AB = 425, BC = 450, and AC = 510. An interior point P is then drawn, and segments are drawn through P parallel to the sides of the triangle. If these three segments are of an equal length d, find d.
- **Problem 12.** Let ABCD be a trapezoid with AB||CD, AB = 11, BC = 5, CD = 19, and DA = 7. Bisectors of $\angle A$ and $\angle D$ meet at P, and bisectors of $\angle B$ and $\angle C$ meet at Q. What is the area of hexagon ABQCDP?
- **Problem 13.** Let \overline{AB} be a diameter of circle ω . Extend \overline{AB} through A to C. Point T lies on ω so that line CT is tangent to ω . Point P is the foot of the perpendicular from A to line CT. Suppose $\overline{AB} = 18$, and let m denote the maximum possible length of segment BP. Find m^2 .
- **Problem 14.** Triangle ABC has BC = 20. The incircle of the triangle evenly trisects the median AD. Find the area of the triangle.
- **Problem 15.** In triangle ABC, AB = 10, BC = 14, and CA = 16. Let D be a point in the interior of \overline{BC} . Let points I_B and I_C denote the incenters of triangles ABD and ACD, respectively. The circumcircles of triangles BI_BD and CI_CD meet at distinct points P and D. Find the maximum possible area of $\triangle BPC$.