UT Arlington Mid-Cities Math Circle $(MC)^2$ Polynomials December 2, 2020

Unless otherwise stated, in this handout, all polynomials are assumed to have real coefficients.

Division of polynomials. For any polynomials f(x) and g(x) there exist polynomials g(x) and r(x) such that

$$f(x) = g(x)q(x) + r(x), \quad \deg r < \deg g \text{ or } r(x) = 0.$$

For example, if $f(x) = x^7 - 1$ and $g(x) = x^3 + x + 1$ then the quotient q(x) is $x^4 - x^2 - x + 1$ and the remainder r(x) is $2x^2 - 1$. If g(x) = x - a we have: f(a) = 0 if and only if f(x) = (x - a)g(x) for some polynomial g(x)

Warm-up problems

Problem 1. Find the remainder of dividing $f(x) = x^{100} - 2x^{51} + 1$ by $g(x) = x^2 - 1$.

Problem 2. Let $P(x) = x^3 + x^2 - r^2x - 2020$ be a polynomial with roots r, s, t. What is P(1)?

Problem 3. Find f(100), where

$$f(x) = 64 \frac{(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)} + 27 \frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)} + 8 \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)} + 1 \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)}$$

for all real numbers x.

Problem 4. Let $f(x) = ax^2 + bx + c$. Suppose that f(x) = x has no real roots. Show that the equation f(f(x)) = x has also no real solutions.

More difficult problems

Problem 5. Let a, b be integers. Then the polynomial $(x - a)^2(x - b)^2 + 1$ cannot be presented as a product of two polynomials with integral coefficients and degree bigger than 1.

Problem 6. Suppose a, b, c be three distinct integers, and let P be a polynomial with integer coefficients. Show that in this case the conditions

$$P(a) = b, P(b) = c, P(c) = a$$

cannot be satisfied simultaneously.

Problem 7. If $a_1, a_2, ..., a_n$ are distinct integers, prove that the polynomial $P(x) = (x - a_1)...(x - a_n) - 1$ it cannot be presented as a product of two polynomials, each of which of degree bigger than 1.

Problem 8. Factor $(1 + x + ... + x^n)^2 - x^n$ as a product of two non-constant polynomials.

Problem 9. Let P(x) be a polynomial of degree n, so that $P(k) = \frac{k}{k+1}$ for k = 0, ..., n. Find P(n + 1).

Problem 10. Let P(x) be the unique polynomial of degree at most 2020 satisfying $P(k^2) = k$ for k = 0, 1, 2, ..., 2020. Compute $P(2021^2)$.

Problem 11. Find all polynomials P(x) such that P(0) = 0 and $P(x^2+1) = P(x)^2 + 1$ for all real numbers x.

Problem 12. Find all polynomials P(x) that satisfy the identity

$$P(x)P(x+1) = P(x^2 + x + 1).$$

Problem 13. Find all polynomials P(x) that satisfy the identity

$$xP(x-1) = (x - 2020)P(x).$$

Problem 14. Does there exist a polynomial P(x, y) with real coefficients such that its range is exactly the set of positive real numbers?

Problem 15. Let P(x) be a polynomial of degree n > 1 with integer coefficients and let k be a positive integer. Consider the polynomial $Q(x) = P(P(\ldots P(P(x))\ldots))$, where P occurs k times. Prove that there are at most n integers k such that Q(k) = k.

Problem 16. Prove that there exists a unique polynomial P(x) with real coefficients such that $xy - x - y|(x + y)^{1000} - P(x) - P(y)$ for all real x, y.

Problem 17. Find all polynomials p(x) with real coefficients that have the following property: there exists a polynomial q(x) with real coefficients such that

$$p(1) + p(2) + p(3) + \cdots + p(n) = p(n)q(n)$$

for all positive integers n.

New problems

Problem 18. (easy) Suppose that $f(x+3) = 3x^2 + 7x + 4$ and $f(x) = ax^2 + bx + c$. What is a + b + c?

Problem 19. In the expansion of

$$(1+x+x^2+\cdots+x^{27})(1+x+x^2+\cdots+x^{14})^2$$
,

what is the coefficient of x^{28} ?

Problem 20. The expression

$$(x+y+z)^{2020} + (x-y-z)^{2020}$$

is simplified by expanding it and combining like terms. How many terms are in the simplified expression?

Problem 21. A polynomial P with integer coefficients such that n divides $P(2^n)$ for every positive integer n. Prove that the polynomial P must be the zero polynomial.