UT Arlington Mid-Cities Math Circle $(MC)^2$ Complex Numbers and Polynomials

Problem 1. Solve the equation $z^8 + 4z^6 - 10z^4 + 4z^2 + 1 = 0$.

Problem 2. Solve the equation

$$4z^{11} + 4z^{10} - 21z^9 - 21z^8 + 17z^7 + 17z^6 + 17z^5 + 17z^4 - 21z^3 - 21z^2 + 4z + 4 = 0.$$

Division of polynomials. For any polynomials f(x) and g(x) there exist polynomials g(x) and r(x) such that

$$f(x) = g(x)q(x) + r(x)$$
, $\deg r < \deg g$ or $r(x) = 0$.

The coefficients of the polynomials can be in: $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}$. For example, if $f(x) = x^7 - 1$ and $g(x) = x^3 + x + 1$ then the quotient q(x) is $x^4 - x^2 - x + 1$ and the remainder r(x) is $2x^2 - 2$. In the case g(x) = x - a we obtain an important fact: f(a) = 0 if and only if f(x) = (x - a)q(x) for some polynomial q(x)

Problem 3. Factor the following polynomials as products of irreducible polynomials with integer coffeicients.

(a)
$$x^4 + x^2 + 1$$
, (b) $x^{10} + x^5 + 1$, (c) $x^9 + x^4 - x - 1$.

Problem 4. Let $f(x) = x^4 + x^3 + x^2 + x + 1$. Find the remainder of $f(x^5)$ when divided by f(x).

Problem 5. Find the remainder of x^{1959} when divided by $(x^2+1)(x^2+x+1)$.

Problem 6. Let $f: \mathbb{C} \to \mathbb{C}$ be a function such that $f(z)f(iz) = z^2$ for all complex numbers z. Prove that f(z)+f(-z)=0 for all complex numbers z.

Problem 7. Find all polynomials f(x), for which $f(x)f(2x^2) = f(2x^3 + x)$.

Problem 8. Find all polynomials f, for which $f(x^2) + f(x)f(x+1) = 0$.

Problem 9. (USAMO 1977) If *a* and *b* are two solutions of $x^4 + x^3 - 1 = 0$, then *ab* is a solution of $x^6 + x^4 + x^3 - x^2 - 1 = 0$.

Problem 9. Let $f: \mathbb{C} \to \mathbb{C}$ be a function such that $f(z)f(iz) = z^2$ for all complex numbers z. Prove that f(z)+f(-z)=0 for all complex numbers z.